Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum

Author:

Sobrado Jesús ManuelORCID

Abstract

Liquid water is well known as the life ingredient as a solvent. However, so far, it has only been found in liquid state on this planetary surface. The aim of this experiment and technological development was to test if a moss sample is capable of surviving in Martian conditions. We built a system that simulates the environmental conditions of the red planet including its hydrological cycle. This laboratory facility enables us to control the water cycle in its three phases through temperature, relative humidity, hydration, and pressure with a system that injects water droplets into a vacuum chamber. We successfully simulated the daytime and nighttime of Mars by recreating water condensation and created a layer of superficial ice that protects the sample against external radiation and minimizes the loss of humidity due to evaporation to maintain a moss sample in survival conditions in this extreme environment. We performed the simulations with the design and development of different tools that recreate Martian weather in the MARTE simulation chamber.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3