Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems

Author:

Bargagli Roberto,Rota EmiliaORCID

Abstract

Antarctica and the Southern Ocean are the most remote regions on Earth, and their quite pristine environmental conditions are increasingly threatened by local scientific, tourism and fishing activities and long-range transport of persistent anthropogenic contaminants from lower latitudes. Plastic debris has become one of the most pervasive and ubiquitous synthetic wastes in the global environment, and even at some coastal Antarctic sites it is the most common and enduring evidence of past and recent human activities. Despite the growing scientific interest in the occurrence of microplastics (MPs) in the Antarctic environment, the lack of standardized methodologies for the collection, analysis and assessment of sample contamination in the field and in the lab does not allow us to establish their bioavailability and potential impact. Overall, most of the Southern Ocean appears to be little-affected by plastic contamination, with the exception of some coastal marine ecosystems impacted by wastewater from scientific stations and tourist vessels or by local fishing activities. Microplastics have been detected in sediments, benthic organisms, Antarctic krill and fish, but there is no clear evidence of their transfer to seabirds and marine mammals. Therefore, we suggest directing future research towards standardization of methodologies, focusing attention on nanoplastics (which probably represent the greatest biological risks) and considering the interactions of MPs with macro- and microalgae (especially sea-ice algae) and the formation of epiplastic communities. In coastal ecosystems directly impacted by human activities, the combined exposure to paint chips, metals, persistent organic pollutants (POPs), contaminants of emerging interest (CEI) and pathogenic microorganisms represents a potential danger for marine organisms. Moreover, the Southern Ocean is very sensitive to water acidification and has shown a remarkable decrease in sea-ice formation in recent years. These climate-related stresses could reduce the resilience of Antarctic marine organisms, increasing the impact of anthropogenic contaminants and pathogenic microorganisms.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference153 articles.

1. DDT residues in Adélie penguins and a crabeater seal from Antarctica;Sladen;Nature,1966

2. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone;Molina;Nature,1974

3. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction;Farman;Nature,1985

4. Bargagli, R. (2005). Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact, Springer.

5. Environmental contamination in Antarctic ecosystems;Bargagli;Sci. Total Environ.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3