Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition

Author:

Shen Fangyao,Peng YongORCID,Kong WanzengORCID,Dai Guojun

Abstract

Emotion recognition has a wide range of potential applications in the real world. Among the emotion recognition data sources, electroencephalography (EEG) signals can record the neural activities across the human brain, providing us a reliable way to recognize the emotional states. Most of existing EEG-based emotion recognition studies directly concatenated features extracted from all EEG frequency bands for emotion classification. This way assumes that all frequency bands share the same importance by default; however, it cannot always obtain the optimal performance. In this paper, we present a novel multi-scale frequency bands ensemble learning (MSFBEL) method to perform emotion recognition from EEG signals. Concretely, we first re-organize all frequency bands into several local scales and one global scale. Then we train a base classifier on each scale. Finally we fuse the results of all scales by designing an adaptive weight learning method which automatically assigns larger weights to more important scales to further improve the performance. The proposed method is validated on two public data sets. For the “SEED IV” data set, MSFBEL achieves average accuracies of 82.75%, 87.87%, and 78.27% on the three sessions under the within-session experimental paradigm. For the “DEAP” data set, it obtains average accuracy of 74.22% for four-category classification under 5-fold cross validation. The experimental results demonstrate that the scale of frequency bands influences the emotion recognition rate, while the global scale that directly concatenating all frequency bands cannot always guarantee to obtain the best emotion recognition performance. Different scales provide complementary information to each other, and the proposed adaptive weight learning method can effectively fuse them to further enhance the performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Program of Zhejiang Province

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3