A Network Model for Detecting Marine Floating Weak Targets Based on Multimodal Data Fusion of Radar Echoes

Author:

Duan Guoxing,Wang YunhuaORCID,Zhang YanminORCID,Wu Shuya,Lv Letian

Abstract

Due to the interaction between floating weak targets and sea clutter in complex marine environments, it is necessary to distinguish targets and sea clutter from different dimensions by designing universal deep learning models. Therefore, in this paper, we introduce the concept of multimodal data fusion from the field of artificial intelligence (AI) to the marine target detection task. Using deep learning methods, a target detection network model based on the multimodal data fusion of radar echoes is proposed. In the paper, according to the characteristics of different modalities data, the temporal LeNet (T-LeNet) network module and time-frequency feature extraction network module are constructed to extract the time domain features, frequency domain features, and time-frequency features from radar sea surface echo signals. To avoid the impact of redundant features between different modalities data on detection performance, a Self-Attention mechanism is introduced to fuse and optimize the features of different dimensions. The experimental results based on the publicly available IPIX radar and CSIR datasets show that the multimodal data fusion of radar echoes can effectively improve the detection performance of marine floating weak targets. The proposed model has a target detection probability of 0.97 when the false alarm probability is 10−3 under the lower signal-to-clutter ratio (SCR) sea state. Compared with the feature-based detector and the detection model based on single-modality data, the new model proposed by us has stronger detection performance and universality under various marine detection environments. Moreover, the transfer learning method is used to train the new model in this paper, which effectively reduces the model training time. This provides the possibility of applying deep learning methods to real-time target detection at sea.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3