Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method

Author:

Bhattacharya Sayantani,Yadav Nitin,Ahmad Azeem,Melandsø Frank,Habib AnowarulORCID

Abstract

Lead Zirconate Titanate (PZT) is used to make ultrasound transducers, sensors, and actuators due to its large piezoelectric coefficient. Several micro-defects develop in the PZT sensor due to delamination, corrosion, huge temperature fluctuation, etc., causing a decline in its performance. It is thus necessary to identify, locate, and quantify the defects. Non-Destructive Structural Health Monitoring (SHM) is the most optimal and economical evaluation method. Traditional ultrasound SHM techniques have a huge impedance mismatch between air and solid material, and most of the popular signal processing methods define time series signals in only one domain, which provides sub-optimal results for non-stationary signals. Thus, to improve the accuracy of detection, the point contact excitation and detection method is implemented to determine the interaction of ultrasonic waves with micro-scale defects in the PZT. The signal generated from this method being non-stationary in nature, it requires signal processing with changeable resolutions at different times and frequencies. The Haar Discrete Wavelet Transformation (DWT) is applied to the time series data obtained from the coulomb coupling setup. Using the above process, defects up to 100 μm in diameter could be successfully distinguished.

Funder

Cristin Project, Norway

UiT The Arctic University of Norway

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised Learning Techniques for Vibration-Based Structural Health Monitoring Systems Driven by Data;Handbook of Research on AI and ML for Intelligent Machines and Systems;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3