An Experimental and Analytical Study on a Damage Constitutive Model of Engineered Cementitious Composites under Uniaxial Tension

Author:

Zhao Dapeng,Wang Changjun,Li Ke,Zhang Pengbo,Cong Lianyou,Chen Dazhi

Abstract

Engineered cementitious composites (ECC) exhibit ultra-high ductility and post-cracking resistance, which makes it an attractive material in civil engineering. First, a monotonic uniaxial tensile test was performed, considering the effects of polyvinyl alcohol (PVA) fiber volume content and water-binder ratio. Then, the effects of the above variables on the tensile characteristics including the tensile stress–strain relationship, deformation capacity, and fracture energy were investigated based on test results; and when the water-binder ratio is 0.28 and the fiber volume content is 2%, the deformation performance of ECC is improved most significantly. Next, combined with damage mechanics theory, the damage evolution mechanism of ECC in monotonic uniaxial tension was revealed, based on which the damage factor and damage evolution equation of ECC were developed and the expressions of model parameters were proposed. Moreover, the comparison between the proposed model and test results demonstrated the accuracy of the proposed model. Finally, to further verify the feasibility of the proposed model, a finite element (FE) simulation analysis of the tensile performance of high-strength stainless steel wire rope (HSSWR) reinforced ECC by adopting the proposed model was compared with test results and the simulation analysis results by using anther existing model, the “trilinear model of ECC”. The comparison shows that the proposed model in this paper can predict more accurately.

Funder

The National Natural Science Foundations of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3