Influence of Mechanical Grinding on Particle Characteristics of Coal Gasification Slag

Author:

Zhu MengboORCID,Xie Geng,Liu Lang,Yang Pan,Qu Huisheng,Zhang Caixin

Abstract

Based on the test results of laser particle size analyzer, specific surface area analyzer and infrared spectrometer, the grinding kinetics of coal gasification slag (CGS) was systematically described by using Divas–Aliavden grinding kinetics, Rosin–Rammler–Bennet (RRB) distribution model and particle size fractal theory. The influence of grinding time and particle group of CGS on the strength activity index of mortar was studied by using the strength activity index of mortar and grey correlation analysis. The results show that the particles are gradually refined before mechanical grinding of CGS for 75 min. When the mechanical grinding time is greater than 75 min, the “agglomeration phenomenon” of fine CGS particles led to the decrease in various properties. Divas–Aliavden grinding kinetics, the RRB model and fractal dimension can characterize the change of CGS particle size in the grinding process quantitatively. The strength activity index of CGS at different curing ages is positively correlated with grinding time, and the influence on the later strength activity index is the most obvious. The relationship between CGS particle size distribution and strength activity index were probed using grey correlation analysis. The CGS particle groups with the particle size of 20~30 μm and 10~20 μm have the greatest impact on the early and late strength activity index, respectively. Therefore, the optimal grinding time of CGS as auxiliary cementing material is 75 min, considering factors, such as economy and performance, and the specific surface area (SSA) is 4.4874 m2·g−1.

Funder

National Natural Science Foundation of China

Shaanxi Innovative Talents Cultivate Program-New-star Plan of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference42 articles.

1. Research on Green Mining of Coal Resources in China: Current Status and Future Prospects;Miao;J. Min. Saf. Eng.,2009

2. Development and progress of modern coal gasification technology;Huang;J. Fuel Chem. Technol.,2002

3. Research and development of large-scale coal gasification technology;Wang;Chem. Ind. Eng. Prog.,2009

4. Research on preparation and properties of modified coal gasification slag-based filling materials for mines;Qu;J. China Coal Soc.,2022

5. The Coal Clean Exploitation Efficiently-Coal Gasification Technology;Zhang;Coal Chem. Ind.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3