Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method

Author:

Sivaprakasam Palani,Abebe Esayas,Čep RobertORCID,Elangovan MuniyandyORCID

Abstract

Analysis of mechanical and thermal behaviors during braking has become an increasingly important issue in many transport sectors for different modes of transportation. Brake failure generated during braking is a complex phenomenon confronting automobile manufacturers and designers. During braking, kinetic energy is transferred to thermal energy, resulting in the intense heating of disc brake rotors that increases proportionally with vehicle speed, mass, and braking frequency. It is essential to look into and improve strategies to make versatile, thermally resistant, lightweight, high-performance discs. As a result, this study uses the finite element method to conduct a thermo-mechanical analysis of aluminum alloy and aluminum matrix nano-composite disc brake rotors to address the abovementioned issues. The FEA method is used for the thermo-mechanical analysis of AMNCs for vented disc brake rotor during emergency braking at 70 km/h. From the results obtained, aluminum base metal matrix nano-composites have an excellent strength-to-weight ratio when used as disc brake rotor materials, significantly improving the discs’ thermal and mechanical performance. From the result of transient thermal analysis, the maximum value of heat flux obtained for aluminum alloy disc is about 8 W/mm2, whereas for AMNCs, the value is increased to 16.28 W/mm2. The result from static analysis shows that the maximum deformation observed is 0.19 mm for aluminum alloy disc and 0.05 mm for AMNCs disc. In addition, the maximum von Mises stress value of AMNC disc is about 184 MPa. The maximum von Mises stress value of aluminum alloy disc is about 180 MPa. Therefore, according to the results, the proposed aluminum base metal matrix nano-composites are valid for replacing existing materials for disc brake rotor applications.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Tribological Performance of Graphene Oxide Reinforced Polyether Ether Ketone Nanocomposites;Journal of Macromolecular Science, Part B;2024-03-29

2. Simulation optimal and design of 3-kW DC-DC converter for pure electric vehicles;Advances in Mechanical Engineering;2023-09

3. Friction heating and stress-strain state of ventilated disc brakes;Journal of Sustainable Development of Transport and Logistics;2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3