Abstract
The trifluorides of the two high field strength elements yttrium and holmium are studied by periodic density functional theory. As a lanthanide, holmium also belongs to the group of rare earth elements (REE). Due to their equivalent geochemical behavior, both elements form a geochemical twin pair and consequently, yttrium is generally associated with the REE as REE+Y. Interestingly, it has been found that DFT/DFT+U describe bulk HoF3 best, when the 4f-electrons are excluded from the valence region. An extensive surface stability analysis of YF3 (PBE) and HoF3 (PBE+Ud/3 eV/4f-in-core) using two-dimensional surface models (slabs) is performed. All seven low-lying Miller indices surfaces are considered with all possible stoichiometric or substoichiometric terminations with a maximal fluorine-deficit of two. This leads to a scope of 24 terminations per compound. The resulting Wulff plots consists of seven surfaces with 5–26% abundance for YF3 and six surfaces with 6–34% for HoF3. The stoichiometric (010) surface is dominating in both compounds. However, subtle differences have been found between these two geochemical twins.
Funder
Freie Universität Berlin
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献