Classification Algorithm for Person Identification and Gesture Recognition Based on Hand Gestures with Small Training Sets

Author:

Rzecki KrzysztofORCID

Abstract

Classification algorithms require training data initially labelled by classes to build a model and then to be able to classify the new data. The amount and diversity of training data affect the classification quality and usually the larger the training set, the better the accuracy of classification. In many applications only small amounts of training data are available. This article presents a new time series classification algorithm for problems with small training sets. The algorithm was tested on hand gesture recordings in tasks of person identification and gesture recognition. The algorithm provides significantly better classification accuracy than other machine learning algorithms. For 22 different hand gestures performed by 10 people and the training set size equal to 5 gesture execution records per class, the error rate for the newly proposed algorithm is from 37% to 75% lower than for the other compared algorithms. When the training set consists of only one sample per class the new algorithm reaches from 45% to 95% lower error rate. Conducted experiments indicate that the algorithm outperforms state-of-the-art methods in terms of classification accuracy in the problem of person identification and gesture recognition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Machine Learning: A Probabilistic Perspective;Murphy,2012

2. Computational Intelligence: Methods and Techniques;Rutkowski,2008

3. An Introduction to Statistical Learning: With Applications in R;James,2014

4. An introduction to kernel and nearest-neighbor nonparametric regression;Altman;Am. Stat.,1992

5. Probabilistic neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3