Dose-Dependent Response to the Environmental Pollutant Dichlorodipheniletylhene (DDE) in HepG2 Cells: Focus on Cell Viability and Mitochondrial Fusion/Fission Proteins

Author:

Burgos Aceves Mario AlbertoORCID,Migliaccio VincenzoORCID,Lepretti Marilena,Paolella GaetanaORCID,Di Gregorio IlariaORCID,Penna SerenaORCID,Faggio CaterinaORCID,Lionetti LillàORCID

Abstract

Dichlorodiphenyldichloroethylene (DDE), the primary persistent metabolite of dichlorodiphenyltrichloroethane (DDT), has toxic effects on cells, but its dose-dependent impact on mitochondrial proteins involved in mitochondrial fusion and fission processes associated with cell viability impairment has not yet been analysed. Mitochondrial fusion and fission processes are critical to maintaining the mitochondrial network and allowing the cell to respond to external stressors such as environmental pollutants. Fusion processes are associated with optimizing mitochondrial function, whereas fission processes are associated with removing damaged mitochondria. We assessed the effects of different DDE doses, ranging between 0.5 and 100 µM, on cell viability and mitochondrial fusion/fission proteins in an in vitro hepatic cell model (human hepatocarcinomatous cells, HepG2); the DDE induced a decrease in cell viability in a dose-dependent manner, and its effect was enhanced in conditions of coincubation with dietary fatty acids. Fusion protein markers exhibited an inverted U-shape dose-response curve, showing the highest content in the 2.5–25 μM DDE dose range. The fission protein marker was found to increase significantly, leading to an increased fission/fusion ratio with high DDE doses. The low DDE doses elicited cell adaption by stimulating mitochondrial dynamics machinery, whereas high DDE doses induced cell viability loss associated with mitochondrial dynamics to shift toward fission. Present results are helpful to clarify the mechanisms underlying the cell fate towards survival or death in response to increasing doses of environmental pollutants.

Funder

Università degli Studi di Salerno

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3