Abstract
Assessing complex environmental mixtures and their effects is challenging. In this study, we evaluate the utility of an avian in vitro screening approach to determine the effects of passive air sampler extracts collected from different global megacities on cytotoxicity and gene expression. Concentrations of a suite of organic flame retardants (OFRs) were quantified in extracts from a total of 19 megacities/major cities in an earlier study, and levels were highly variable across sites. Chicken embryonic hepatocytes were exposed to serial dilutions of extracts from the 19 cities for 24 h. Cell viability results indicate a high level of variability in cytotoxicity, with extracts from Toronto, Canada, having the lowest LC50 value. Partial least squares (PLS) regression analysis was used to estimate LC50 values from OFR concentrations. PLS modeling of OFRs was moderately predictive of LC50 (p-value = 0.0003, r2 = 0.66, slope = 0.76, when comparing predicted LC50 to actual values), although only after one outlier city was removed from the analysis. A chicken ToxChip PCR array, comprising 43 target genes, was used to determine effects on gene expression, and similar to results for cell viability, gene expression profiles were highly variable among the megacities. PLS modeling was used to determine if gene expression was related to the OFR profiles of the extracts. Weak relationships to the ToxChip expression profiles could be detected for only three of the 35 OFRs (indicated by regression slopes between 0.6 and 0.5 when comparing predicted to actual OFR concentrations). While this in vitro approach shows promise in terms of evaluating effects of complex mixtures, we also identified several limitations that, if addressed in future studies, might improve its performance.
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献