Abstract
Organophosphorus based flame retardants (OPFRs) extensively used as alternatives to banned polybrominated diphenyl ethers and hexabromocyclododecane have been garnering interest due to the possibility that these compounds may have less significant impact on human and environmental health. Long pretreatment time, larger consumption of organic solvents, matrix interferents, and cross-contamination were found in previous studies while assessing OPFRs in indoor environments. We developed and optimized the extraction methods and simultaneous analysis of 11 OPFRs in indoor air, dust and skin wipe samples using the GC-MS approach. The proposed methods were validated using a standard addition approach, dust SRM 2585 and the real samples. Our procedures enabled the analyst to effectively limit coextracted interferences and simultaneous analytical methods of 11 target OPFRs for three matrices were achieved. The validation was performed according to standard guidelines (relative errors were identified by the analytes: −19% to 18% for indoor air, −11% to 14% for house dust, −15% to 16% for skin wipe). Good practices for quality assurance and quality control were well stated. The current high-Eco-scored methods could be categorized as “an excellent green analysis”. All analytes for the target OPFRs were detected in the real samples of indoor air, house dust and skin wipe collected from ten Taiwanese homes. Tris(2-butoxyethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate and tris(chloroisopropyl) phosphate were the most abundant OPFRs. Rapid, green and cost-effective GC-MS methods were developed and validated for the analysis of eleven OPFRs in indoor air, house dust and skin wipes.
Funder
Ministry of Science and Technology Taiwan
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献