Retinal Nerve Fiber Layer Thickness and Oxidative Stress Parameters in Migraine Patients without Aura: A Pilot Study

Author:

Bulboacă Adriana ElenaORCID,Stănescu Ioana C.ORCID,Bolboacă Sorana D.ORCID,Bulboacă Angelo C.,Bodizs Gyorgy I.,Nicula Cristina A.ORCID

Abstract

Background: Migraine is one of the most common disorders and its pathophysiological mechanisms are still under research, oxidative stress being emphasized as an important contributor. This study aimed to analyze the retinal nerve fiber layer (RNFL) thickness and oxidative/anti-oxidant balance in migraine patients. Methods: Two groups of subjects were evaluated: a group of patients with migraine and a control group of healthy volunteers. RNFL thickness was assessed for all subjects by the ocular coherence tomography spectral domain (OCT-SD). The oxidative stress parameter, namely nitric oxide (NOx), malondialdehyde (MDA), and total oxidative stress (TOS) were assessed. The antioxidant capacity of plasma was evaluated by assessing the level of catalase, and total anti-oxidative (TOS) capacity. Migraine severity was graded using the Migraine Disability Assessment Score (MIDAS) questionnaire. Results: All the oxidative stress parameters (NOx, MDA, and TOS) were significantly increased, and both parameters for anti-oxidative status were significantly decreased in the migraine group compared with the control group (p < 0.0001). Significant correlations with all the quadrants and different oxidative stress parameters were found, most involved being temporal quadrant. A significant positive correlation between catalase and macular RNFL thickness (inner ring, temporal quadrant) in migraine patients, for both eyes, was observed (p = 0.014 for the right eye and p = 0.12 for the left eye). Conclusion: The assessment of the oxidative stress/anti-oxidative balance together with RFLN thickness can constitute a promising method to evaluate the progression of the diseases. It can also contribute to the estimation of the efficiency of various therapies targeting oxidative stress and associated inflammation.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3