Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron

Author:

Jaganjac MoranaORCID,Borovic Sunjic Suzana,Zarkovic Neven

Abstract

Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3