Low-Osmolality Carbohydrate–Electrolyte Solution Ingestion Avoid Fluid Loss and Oxidative Stress after Exhaustive Endurance Exercise

Author:

Huang Wen-Ching,Tung Yu-TangORCID,Wu Mai-Szu,Liu Ming-Che,Lin Tsai-Jung,Yang Ming-TaORCID

Abstract

Low-osmolality carbohydrate–electrolyte solution (LCS) ingestion can replace losses from exercise-induced dehydration, but the benefits of LCS ingestion strategy after exhaustive endurance exercise (EEE) remain unknown. The present study evaluated the effects of LCS ingestion on dehydration, oxidative stress, renal function, and aerobic capacity after EEE. In our study with its double-blind, crossover, counterbalanced design, 12 healthy male participants were asked to consume LCS (150 mL four times per hour) or placebo (water) 1 h before and 1 h after EEE. All participants completed a graded exercise test to exhaustion on a treadmill for the determination of maximal oxygen consumption ( V ˙ O 2 max ), applied to further intensity calibration, and then completed the EEE test. The average heart rate, maximal heart rate, running time to exhaustion, and peak oxygen uptake (VO2peak) were recorded during the exercise period. The participants’ body weight was recorded at different time points before and after the EEE to calculate the dehydration rate. Blood samples were drawn at baseline and before, immediately after, 1 h after, and 2 h after EEE to determine indicators of oxidative stress and renal function. The results indicated that the dehydration rates in participants with LCS ingestion at 15 min, 30 min, and 45 min after EEE were significantly lower than in participants with placebo ingestion (−1.86 ± 0.47% vs. −2.24 ± 0.72%; −1.78 ± 0.50% vs. −2.13 ± 0.74%; −1.54 ± 0.51% vs. −1.94 ± 0.72%, respectively; p < 0.05). In addition, the concentration of catalase in participants with LCS ingestion immediately after EEE was significantly higher than in participants with placebo ingestion (2046.21 ± 381.98 nmol/min/mL vs. 1820.37 ± 417.35 nmol/min/mL; p < 0.05). Moreover, the concentration of protein carbonyl in participants with LCS ingestion immediately after EEE was slightly lower than in participants with placebo ingestion (2.72 ± 0.31 nmol carbonyl/mg protein vs. 2.89 ± 0.43 nmol carbonyl/mg protein; p = 0.06). No differences were noted for other variables. Our findings conclude that LCS ingestion can effectively avoid fluid loss and oxidative stress after EEE. However, LCS ingestion had no benefits for renal function or aerobic capacity.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference36 articles.

1. The hydration equation: Update on water balance and cognitive performance;Riebl;ACSMs. Health Fit. J.,2013

2. American college of sports medicine joint position statement. Nutrition and athletic performance;Thomas;Med. Sci. Sports Exerc.,2016

3. Chinese clinical practice guidelines for acute infectious diarrhea in children

4. Oral Rehydration Solutions in Non-Cholera Diarrhea: A Review

5. Exercise-Associated Hyponatremia: 2017 Update

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3