N-Acetylaspartylglutamate (NAAG) Pretreatment Reduces Hypoxic-Ischemic Brain Damage and Oxidative Stress in Neonatal Rats

Author:

Bratek Ewelina,Ziembowicz Apolonia,Salinska ElzbietaORCID

Abstract

N-acetylaspartylglutamate (NAAG), the most abundant peptide transmitter in the mammalian nervous system, activates mGluR3 at presynaptic sites, inhibiting the release of glutamate, and acts on mGluR3 on astrocytes, stimulating the release of neuroprotective growth factors (TGF-β). NAAG can also affect N-methyl-d-aspartate (NMDA) receptors in both synaptic and extrasynaptic regions. NAAG reduces neurodegeneration in a neonatal rat model of hypoxia-ischemia (HI), although the exact mechanism is not fully recognized. In the present study, the effect of NAAG application 24 or 1 h before experimental birth asphyxia on oxidative stress markers and the potential mechanisms of neuroprotection on 7-day old rats was investigated. The intraperitoneal application of NAAG at either time point before HI significantly reduced the weight deficit of the ischemic brain hemisphere, radical oxygen species (ROS) content and activity of antioxidant enzymes, and increased the concentration of reduced glutathione (GSH). No additional increase in the TGF-β concentration was observed after NAAG application. The fast metabolism of NAAG and the decrease in TGF-β concentration that resulted from NAAG pretreatment, performed up to 24 h before HI, excluded the involvement mGluR3 in neuroprotection. The observed effect may be explained by the activation of NMDA receptors induced by NAAG pretreatment 24 h before HI. Inhibition of the NAAG effect by memantine supports this conclusion. NAAG preconditioning 1 h before HI results in a mixture of mGluR3 and NMDA receptor activation. Preconditioning with NAAG induces the antioxidative defense system triggered by mild excitotoxicity in neurons. Moreover, this response to NAAG pretreatment is consistent with the commonly accepted mechanism of preconditioning. However, this theory requires further investigation.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3