Affiliation:
1. Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
Abstract
The implementation of next-generation sequencing (NGS) in clinical oncology has enabled the analysis of multiple cancer-associated genes for diagnostics and treatment purposes. The detection of pathogenic and likely pathogenic mutations is crucial to manage the disease. Obtaining the mutational profile may be challenging in samples with low yields of DNA—reflected by the type of biological material, such as formalin-fixed paraffin-embedded tissue (FFPE), needle biopsies, and circulating free/tumor DNA, as well as a sparse tumor content. Moreover, standardized strict procedures for the extraction of DNA in a clinical setting might contribute to lower amounts of DNA per µL. The detection of variants in low-yield DNA samples remains a challenge in clinical diagnostics, where molecular analyses such as NGS are needed. Here, we performed vacuum centrifugation on DNA extracted from five FFPE tissue blocks, with concentrations below 0.2 ng/µL. Through NGS analysis, we found that low-yield DNA samples could be concentrated to sufficient levels, without compromising the mutational profile.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献