Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty

Author:

Huang Xiang1,Qu Yapan2,Zhu Zhentao34,Wu Qiuchi4

Affiliation:

1. College of Business, Nanjing University, Nanjing 210093, China

2. School of Public Finance and Taxation, Zhejiang University of Finance and Economics, Hangzhou 310018, China

3. International Joint Laboratory of Green and Low Carbon Development, Nanjing 211167, China

4. Nanjing Institute of Technology, Nanjing 211167, China

Abstract

The application of photovoltaic (PV) power to split water and produce hydrogen not only reduces carbon emissions in the process of hydrogen production but also helps decarbonize the transportation, chemical, and metallurgical industries through P2X technology. A techno-economic model must be established to predict the economics of integrated PV–hydrogen technology at key time points in the future based on the characteristics, variability, and uncertainties of this technology. In this study, we extracted the comprehensive technical factors (including PV tracking system coefficient, PV conversion efficiency, electrolyzer efficiency, and electrolyzer degradation coefficient) of an integrated PV–hydrogen system. Then, we constructed a PV hydrogen production techno-economic (PVH2) model. We used the levelized cost of hydrogen production (LCOH) method to estimate the cost of each major equipment item during the project lifetime. We combined the PVH2 and learning curve models to determine the cost trend of integrated PV–hydrogen technology. We developed a two-dimensional Monte Carlo approach to predict the variation interval of LCOH for PV–hydrogen projects in 2030 and 2050, which described the current technology variability with variable parameters and the uncertainty in the technology advancement with uncertain parameters. The results showed that the most critical factors influencing LCOH are PV conversion efficiency and the capital cost of the electrolyzer. The LCOH of PV to hydrogen in China will drop to CNY 18–32/kg by 2030 and CNY 8–18/kg by 2050. The combination of a learning curve model and a Monte Carlo method is an effective tool to describe the current variability in hydrogen production technologies and the uncertainty in technological progress.

Funder

National Natural Science Foundation of China

Open Research Fund of NJIT Research Center

Key Laboratory of Carbon Neutrality and Territory Optimization, Ministry of Natural Resources

Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3