Vision-Based Ingenious Lane Departure Warning System for Autonomous Vehicles

Author:

Anbalagan Sudha1,Srividya Ponnada2ORCID,Thilaksurya B.2,Senthivel Sai Ganesh3ORCID,Suganeshwari G.4ORCID,Raja Gunasekaran2

Affiliation:

1. Centre for Smart Grid Technologies, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India

2. NGNLab, Department of Computer Technology, Anna University, MIT Campus, Chennai 600044, India

3. Information Networking Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

4. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India

Abstract

Lane detection is necessary for developing intelligent Autonomous Vehicles (AVs). Using vision-based lane detection is more cost-effective, requiring less operational power. Images captured by the moving vehicle include varying brightness, blur, and occlusion caused due to diverse locations. We propose a Vision-based Ingenious Lane Departure Warning System (VILDS) for AV to address these challenges. The Generative Adversarial Networks (GAN) of the VILDS choose the most precise features to create images that are identical to the original but have better clarity. The system also uses Long Short-Term Memory (LSTM) to learn the average behavior of the samples to forecast lanes based on a live feed of processed images, which predicts incomplete lanes and increases the reliability of the AV’s trajectory. Further, we devise a strategy to improve the Lane Departure Warning System (LDWS) by determining the angle and direction of deviation to predict the AV’s Lane crossover. An extensive evaluation of the proposed VILDS system demonstrated the effective working of the lane detection and departure warning system modules with an accuracy of 98.2% and 96.5%, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3