Conductive Oxides for Formulating Mitigated-Sensitivity Energetic Composite Materials

Author:

Gibot PierreORCID,Puel Estelle,Lallemand Bastien,Oudot Franck

Abstract

Composite energetic nanomaterials, otherwise known as nanothermites, consist of physical mixtures of fuel and oxidizer nanoparticles. When a combustion reaction takes place between both components, extremely impressive conditions are created, such as high temperatures (>1000 °C), intense heat releases (>kJ/cm3), and sometimes gas generation. These conditions can be adjusted by modifying the chemical nature of both reactants. However, these energetic composites are extremely sensitive to electrostatic discharge. This may lead to accidental ignitions during handling and transportation operations. This study examines the use of a n-type semiconductor ITO material as an alternative oxidizer combined with aluminum fuel. Indium tin oxide (ITO) ceramic is widely used in the elaboration of conducting coatings for antistatic applications because of its ability to conduct electrical charges (n-type semiconductor). The energetic performance of the Al/ITO thermite was determined, i.e., the sensitivity threshold regarding mechanical (impact and friction) and electrostatic discharge (ESD) stresses, as well as the reactive behavior (heat of reaction, combustion front velocity). The results demonstrate insensitivity toward mechanical stresses regardless of the ITO granulometry. As regards the spark sensitivity, using ITO microparticles considerably raises the sensitivity threshold value (<0.21 mJ vs. 13.70 mJ). A combustion velocity of nearly 650 m/s was also determined.

Funder

French National Centre for Scientific Research

French-German Research Institute of Saint-Louis

University of Strasbourg

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference39 articles.

1. The Chemistry of Explosives;Akhavan,2004

2. Theoretical energy release of thermites, intermetallics, and combustible metals;Fischer;Proceedings of the 24th International Pyrotechnics Seminar,1998

3. Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites

4. Effect of Bulk Density on Reaction Propagation in Nanothermites and Micron Thermites

5. High Energy Materials;Agrawal,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3