Influence on the Flexural Behaviour of High-Volume Fly-Ash-Based Concrete Slab Reinforced with Sustainable Glass-Fibre-Reinforced Polymer Sheets

Author:

Madan Chinnasamy Samy,Panchapakesan Krithika,Anil Reddy Potlapalli Venkata,Joanna Philip SarathaORCID,Rooby Jessy,Gurupatham Beulah Gnana Ananthi,Roy KrishanuORCID

Abstract

Concrete structures provided with steel bars may undergo deterioration due to fatigue and corrosion, which leads to an increase in repair and maintenance costs. An innovative approach to eliminating these drawbacks lies in the utilisation of glass-fibre-reinforced polymer (GFRP) sheets as reinforcement in concrete structures instead of steel bars. This article relates to the investigation of the flexural behaviour of ordinary portland cement (OPC) concrete slabs and high-volume fly ash (HVFA) concrete slabs reinforced with bi-directional GFRP sheets. Slab specimens were cast with 60% fly ash as a replacement for cement and provided with a 1 mm-thick GFRP sheet in 2, 3 and 4 layers. The flexural behaviour of slabs reinforced with GFRP sheets was compared with that of the slabs reinforced with steel bars. Experiment results such as cracking behaviour, failure modes and load–deflection, load–strain and moment–curvature relationships of the slab specimens are presented. Subsequently, the nonlinear finite-element method (NLFEM) using ANSYS Workbench 2022-R1 was carried out and compared with the experimental results. The results obtained from the numerical investigation correlated with the experimental results. The experimental investigation showed that the HVFA concrete slabs reinforced with GFRP sheet provided a better alternative compared to the steel reinforcement, which led to sustainable construction.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3