A Hierarchical Neural Network for Point Cloud Segmentation and Geometric Primitive Fitting

Author:

Wan Honghui1ORCID,Zhao Feiyu12ORCID

Affiliation:

1. College of Computer Science, South-Central Minzu University, No. 182 Minzu Avenue, Hongshan District, Wuhan 430074, China

2. Key Laboratory of Cyber-Physical Fusion Intelligent Computing (South-Central Minzu University), State Ethnic Affairs Commission, No. 182 Minzu Avenue, Hongshan District, Wuhan 430074, China

Abstract

Automated generation of geometric models from point cloud data holds significant importance in the field of computer vision and has expansive applications, such as shape modeling and object recognition. However, prevalent methods exhibit accuracy issues. In this study, we introduce a novel hierarchical neural network that utilizes recursive PointConv operations on nested subdivisions of point sets. This network effectively extracts features, segments point clouds, and accurately identifies and computes parameters of regular geometric primitives with notable resilience to noise. On fine-grained primitive detection, our approach outperforms Supervised Primitive Fitting Network (SPFN) by 18.5% and Cascaded Primitive Fitting Network (CPFN) by 11.2%. Additionally, our approach consistently maintains low absolute errors in parameter prediction across varying noise levels in the point cloud data. Our experiments validate the robustness of our proposed method and establish its superiority relative to other methodologies in the extant literature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference43 articles.

1. Morteza, D., Ahmed, H., Egils, A., Fatemeh, N., Fatih, A., Hasan, S.A., Jelena, G., Rain, E.H., Cagri, O., and Gholamreza, A. (2018). 3D scanning: A comprehensive survey. arXiv.

2. A Survey of Methods for Converting Unstructured Data to CSG Models;Fayolle;Comput. Aided Des.,2024

3. Multi-view 3D data fusion and patching to reduce Shannon entropy in Robotic Vision;Sergiyenko;Opt. Lasers Eng.,2024

4. Optimal randomized RANSAC;Chum;IEEE Trans. Pattern Anal. Mach. Intell.,2008

5. Li, L., Sung, M., Dubrovina, A., Yi, L., and Guibas, L.J. (2019, January 15–20). Supervised fitting of geometric primitives to 3d point clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Patten Recognition, Long Beach, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3