On the Generalizability of Time-of-Flight Convolutional Neural Networks for Noninvasive Acoustic Measurements

Author:

Saini Abhishek1ORCID,Greenhall John James1,Davis Eric Sean1ORCID,Pantea Cristian1

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Abstract

Bulk wave acoustic time-of-flight (ToF) measurements in pipes and closed containers can be hindered by guided waves with similar arrival times propagating in the container wall, especially when a low excitation frequency is used to mitigate sound attenuation from the material. Convolutional neural networks (CNNs) have emerged as a new paradigm for obtaining accurate ToF in non-destructive evaluation (NDE) and have been demonstrated for such complicated conditions. However, the generalizability of ToF-CNNs has not been investigated. In this work, we analyze the generalizability of the ToF-CNN for broader applications, given limited training data. We first investigate the CNN performance with respect to training dataset size and different training data and test data parameters (container dimensions and material properties). Furthermore, we perform a series of tests to understand the distribution of data parameters that need to be incorporated in training for enhanced model generalizability. This is investigated by training the model on a set of small- and large-container datasets regardless of the test data. We observe that the quantity of data partitioned for training must be of a good representation of the entire sets and sufficient to span through the input space. The result of the network also shows that the learning model with the training data on small containers delivers a sufficiently stable result on different feature interactions compared to the learning model with the training data on large containers. To check the robustness of the model, we tested the trained model to predict the ToF of different sound speed mediums, which shows excellent accuracy. Furthermore, to mimic real experimental scenarios, data are augmented by adding noise. We envision that the proposed approach will extend the applications of CNNs for ToF prediction in a broader range.

Funder

Laboratory Directed Research and Development program of Los Alamos National Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3