The Effect of Variable Magnetic Field on Viscous Fluid between 3-D Rotatory Vertical Squeezing Plates: A Computational Investigation

Author:

Alam Muhammad Kamran,Bibi Khadija,Khan AamirORCID,Fernandez-Gamiz UnaiORCID,Noeiaghdam SamadORCID

Abstract

In this paper, the 3-D squeezing flow of viscous incompressible fluid between two parallel plates rotating at the same rate is investigated. The flow is observed under the influence of the varying magnetic field. The flow phenomena are modeled by utilizing the basic governing equations, i.e., equation of continuity, coupled Navier Stokes, and Magnetic Field equations. Using appropriate similarity transformations, the resultant partial differential equations are then transformed into a system of ordinary differential equations. The computational technique is developed via the Homotopy Analysis Method (HAM) to obtain the solution of transformed systems of ordinary differential equations. The influence of several engineering fluid parameters, such as squeeze Reynolds number, magnetic field strength parameter, and magnetic Reynolds number, on velocity and magnetic field components, are observed from different graphs. It has been investigated that by increasing the squeeze Reynolds number, fluid velocity in the y and z directions will be increased as well. On the magnetic field component along the y-axis, an increasing influence of squeezing Reynolds number is also noticed. Similarly, raising the magnetic Reynolds number increases the velocity along the y-axis, whereas the inverse relationship is found for magnetic field components. Furthermore, for each flow phenomenon, an error analysis is also presented.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3