Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites

Author:

Masood BilalORCID,Guobing Song,Nebhen JamelORCID,Rehman Ateeq UrORCID,Iqbal Muhammad NaveedORCID,Rasheed IftikharORCID,Bajaj MohitORCID,Shafiq MuhammadORCID,Hamam HabibORCID

Abstract

This paper investigates the response and characteristics of the narrowband power line communication (NB-PLC) technique for the effective control of electric appliances such as smart air conditioners (SACs) for demand side management (DSM) services. The expression for temperature sensitivity by examining the influence of atmospheric temperature variations on power consumption profile of all possible types of loads, i.e., residential, commercial, and industrial loads is derived and analyzed. Comprehensive field measurements on these power consumers are carried out in Lahore, Pakistan. The responses of low voltage channels, medium voltage channels, and transformer bridge for a 3–500 kHz NB-PLC frequency range are presented for DSM services. The master control room transmits control commands for the thermostat settings of SACs over power lines, crossing the transformer bridge to reach the SACs of power consumers by using communication protocol smart energy profile 1.0. The comparison of hourly and daily power consumption profiles under evaluation loads, by analyzing typical and variable frequency air conditioners on setting thermostat temperature at 25 °C and 27 °C conventionally and then by using DSM control technique, is analyzed. A prominent reduction in power consumption is found with the implementation of the DSM control technique.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3