Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery

Author:

Chen Liming,Liu Tao,Zhang Yimin,Liu Hong,Ding MuqingORCID,Pan Dong

Abstract

Glucose, sucrose, D(+)-xylose and α-lactose monohydrate are selected as additives relative to the negative electrolyte of Vanadium Redox Flow Battery (VRFB), with the aim of reducing vanadium permeation and improving electrochemical performance to mitigate capacity decay. The results of a charge–discharge test show that the cell with α-Lactose monohydrate in the negative electrolyte exhibits the best capacity retention. The capacity retention of a single cell employing 1 wt% α-Lactose monohydrate in the negative electrolyte was 71% after 30 cycles, which is 41.5% higher than 29.5% of the control group. Correspondingly, adding α-Lactose monohydrate into the negative electrolyte also significantly inhibits vanadium crossover and water transfer. Furthermore, the effects of additives on the performance of the negative electrolyte are studied by thermal stability experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The stability experiments indicate that the introduction of 1 wt% α-Lactose monohydrate can elevate the stability of the negative electrolyte at low temperatures. The electrochemical measurements indicate that V(III) electrolyte with 1 wt% α-Lactose monohydrate obtains superior electrochemical activity and reversibility, which can be ascribed to the fact that the hydroxyl group carried by the additive provides more active sites for the redox reaction. Herein, the study provides a meaningful reference for mitigating the capacity decay of VRFB.

Funder

Tao Liu

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3