Environmental Impact Assessment and Classification of 48 V Plug-in Hybrids with Real-Driving Use Case Simulations

Author:

Frambach TobiasORCID,Kleisch RalfORCID,Liedtke Ralf,Schwarzer Jochen,Figgemeier EgbertORCID

Abstract

Plug-in hybrid electric vehicles (PHEVs) are commonly operated with high-voltage (HV) components due to their higher power availability compared to 48 V-systems. On the contrary, HV-powertrain components are more expensive and require additional safety measures. Additionally, the HV system can only be repaired and maintained with special equipment and protective gear, which is not available in all workshops. PHEVs based on a 48 V-system level can offer a reasonable compromise between the greenhouse gas (GHG) emission-saving potential and cost-effectiveness in small- and medium-sized electrified vehicles. In our study, the lifecycle emissions of the proposed 48 V PHEV system were compared to a conventional vehicle, 48 V HEV, and HV PHEV for individual driving use cases. To ensure a holistic evaluation, the analysis was based on measured real-driving cycles including Global Position System (GPS) map-matched slope profiles for a parallel hybrid. Optimal PHEV battery capacities were derived for the individual driving use cases. The analysis was based on lifecycle emissions for 2020 and 2030 in Europe. The impact analysis revealed that 48 V PHEVs can significantly reduce GHG emissions compared to vehicles with no charging opportunity for all use cases. Furthermore, the findings were verified for two vehicle segments and two energy mix scenarios. The 48 V PHEVs can therefore complement existing powertrain portfolios and contribute to reaching future GHG emission targets.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference52 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3