Intermediate Pyrolysis of Brewer’s Spent Grain: Impact of Gas Atmosphere

Author:

Bieniek ArturORCID,Jerzak Wojciech,Sieradzka MałgorzataORCID,Mika ŁukaszORCID,Sztekler KarolORCID,Magdziarz AnetaORCID

Abstract

This work focuses on the impact of carrier gas on the quantity and quality of pyrolytic products received from intermediate pyrolysis of the brewer’s spent grain. In this study, three types of carrier gases were tested: argon, nitrogen, and carbon dioxide at three temperatures of 500, 600, and 700 °C. On the basis of the process conditions, the yield of products was determined. The ultimate analysis of the char was performed, and for selected chars, the combustion properties were determined. Gas chromatography of the organic fraction of oil was performed, and the compounds were determined. Additionally, microscale investigation of the spent grain pyrolysis was performed by thermogravimetric analysis. The results showed that there were no significant differences in product yields in various atmospheres. Char yield changed only with temperature from 28% at 500 °C up to 19% at 700 °C. According to ultimate analysis, the char from CO2 pyrolysis was approximately 2% richer in carbon and this fact did not influence on the combustion properties of the char. The oil fraction was characterized mainly by acids with a maximum content of 68% at 600 °C in an argon atmosphere and the acid concentration depended on the carrier gas as follows line: Ar > N2 > CO2.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Directive 2009/30/EC Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 Amending Directive 98/70/EC as Regards the Specification of Petrol, Diesel and Gas-Oil and Introducing a Mechanism to Monitor and Reduce Greenhouse Gas Emissions and Amendhttps://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009L0030

2. Summary for Policymakers

3. Projection of world fossil fuels by country

4. Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy

5. The capability to reduce primary energy demand in EU housing

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3