Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications

Author:

Zdanowski MaciejORCID

Abstract

Long-term and fault-free operation of power transformers depends on the electrical strength of the insulation system and effective heat dissipation. Forced circulation of the insulating liquid is used to increase the cooling capacity. A negative effect of such a solution is the creation of the phenomenon of streaming electrification, which in unfavorable conditions may lead to damage to the insulating system of the transformer. This paper presents results of research confirming the possibility of using fullerene C60 to reduce the phenomenon of streaming electrification generated by the flow of liquid dielectrics. The volume charge density qw was used as a material indicator to determine the electrostatic charging tendency (ECT) of nanofluids. This parameter was determined from the Abedian-Sonin electrification model on the basis of electrification current measurements and selected physicochemical and electrical properties of the liquid. The electrification current was measured in a flow system with an aluminum pipe of 4 mm diameter and 400 mm length. All measurements were carried out at a temperature of 20 °C. The influence of flow velocity (from 0.34 m/s to 1.75 m/s) and C60 concentration (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L and 350 mg/L) was analyzed on the electrification of fresh and aged Trafo En mineral oil, as well as Midel 1204 natural ester and Midel 7131 synthetic ester. The density, kinematic viscosity, dielectric constant, and conductivity were also determined. A negative effect of the C60 doping on the electrostatic properties of fresh mineral oil was demonstrated. For other liquids, fullerene C60 can be used as an inhibitor of the streaming electrification process. Based on the analysis of the qw parameter, the optimum concentration of C60 (from 100 mg/L to 200 mg/L) resulting in the highest reduction of the electrification phenomenon in nanofluids was identified.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Economical aspects and experiences of power transformer on-line monitoring;Boss,2000

2. CIGRE Technical Brochure 248,2004

3. Transformer reliability taking predictive maintenance program to the next level;Schneider,2017

4. Causes of transformer failures and diagnostic methods—A review;Christina;Renew. Sustain. Energy Rev.,2018

5. A comparative study of thermal aging of transformer insulation paper impregnated in natural ester and in mineral oil

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3