Abstract
Green façades with an active water regime and the water flowing through the substrate itself are not common. This system reduces the temperatures and incorporates the evapotranspiration, which could be more effective than by the regular green façades. The use of a double-skin façade with a ventilated air cavity can reduce the heat load, but the evapotranspiration can reduce it even more with additional benefits. Green façades could also serve as a key element for reducing the surface temperatures of the insulated metal panels (IMP), which are mostly used as a façade system for production facilities or factories. In this paper, a prototype of a double-skin façade, which consisted of vegetation board from recycled materials and IMP, is tested in a climate chamber to evaluate the function and benefits of such a combination. The outdoor skin is made from board, the surface of which is covered by the rooted succulent plants. Measurement results are represented as a direct comparison of single sunny day surface temperatures with and without a double-skin (green) façade. The use of the green façade reduces the indoor surface temperature of IMP by 2.8 °C in this measurement. The use of water circulation through the outdoor skin reduces the temperature of the vegetation board by 28 °C. This could have a great impact on the microclimate around the façade. Because of the controlled environment and ventilation system in a climate chamber, it is not possible to investigate the airflow and solar chimney effect within the ventilated cavity. In addition, it is complicated to show the potential of microclimate change caused by the wet vegetation surface. For the mentioned reasons, the need to carry out “in situ” tests on a model wall under the real conditions was indicated.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献