Boxing Punch Detection with Single Static Camera

Author:

Stefański Piotr1ORCID,Kozak Jan1ORCID,Jach Tomasz1ORCID

Affiliation:

1. Department of Machine Learning, University of Economics in Katowice, 1 Maja 50, 40-287 Katowice, Poland

Abstract

Computer vision in sports analytics is gaining in popularity. Monitoring players’ performance using cameras is more flexible and does not interfere with player equipment compared to systems using sensors. This provides a wide set of opportunities for computer vision systems that help coaches, reporters, and audiences. This paper provides an introduction to the problem of measuring boxers’ performance, with a comprehensive survey of approaches in current science. The main goal of the paper is to provide a system to automatically detect punches in Olympic boxing using a single static camera. The authors use Euclidean distance to measure the distance between boxers and convolutional neural networks to classify footage frames. In order to improve classification performance, we provide and test three approaches to manipulating the images prior to fitting the classifier. The proposed solution achieves 95% balanced accuracy, 49% F1 score for frames with punches, and 97% for frames without punches. Finally, we present a working system for analyses of a boxing scene that marks boxers and labelled frames with detected clashes and punches.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3