Abstract
The study of changes in the resilience of socio-hydrological systems in arid zones is of great significance to ensure the sustainable development of socio-economic and water resources in arid zones. In order to fully understand the level of resilience development of the Tarim River Basin socio-hydrological system and the main impediments to its development, we constructed a resilience evaluation model of the Tarim River Basin socio-hydrological system from two aspects, vulnerability and adaptability, which is what makes this paper different from other studies. The evaluation index weights were determined using a comprehensive assignment, and the barrier factors and evolutionary characteristics of the system resilience were revealed based on the TOPSIS algorithm and barrier degree model. The results show that (1) during the period 2001–2020, the resilience of the socio-hydrological system in the Tarim River Basin showed a fluctuating upward trend, with the calculated values mainly in the range of 0.8–1.5, and the overall resilience level was mainly at the medium or good level; (2) from the changes in each criterion layer, the vulnerability and adaptability of the Tarim River Basin showed a fluctuating upward trend from 2001 to 2020, with an increase in vulnerability and adaptability; and (3) the main barriers to the resilience of the socio-hydrological system in the Tarim River Basin are the degree of pollution of surface water sources and the amount of water consumption per 10,000 yuan of GDP. We believe that we should continue to change the economic development model, vigorously develop water-saving irrigation technology, improve water resource utilisation and economic benefits, and improve the overall resilience of the socio-hydrological system. A full understanding of the evolutionary characteristics of the resilience of socio-hydrological systems and the main influencing factors can provide a theoretical basis for future water resources development and utilisation, socio-economic development, and related policy formulation.
Funder
the Third Xinjiang Scientific Expedition Program
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference49 articles.
1. Analysis of urban water cycle evolution and countermeasures;Wang;J. Hydraul. Eng.,2021
2. Basic theory for urban water management and sponge city—Review on urban hydrology;Xu;J. Hydraul. Eng.,2019
3. A review on socio-hydrology and urban hydrology;Tian;Adv. Earth Sci.,2018
4. The future of hydrology: An evolving science for a changing world
5. Socio-hydrology: A new science of people and water
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献