Modeling Climatic Influences on Three Parasitoids of Low-Density Spruce Budworm Populations. Part 2: Meteorus trachynotus (Hymenoptera: Braconidae)

Author:

Régnière JacquesORCID,Saint-Amant RémiORCID,Thireau Jean-Claude,Therrien Pierre,Hébert ChristianORCID,Martel Véronique

Abstract

This is the second article of a series of three where we develop temperature-driven models to describe the seasonal interactions between parasitoids and their hosts which we use to explore the impact of climate on their spatiotemporal biology. Here, we model the biology of Meteorus trachynotus (Hymenoptera: Braconidae) with an individual-based model of its daily interactions with two host species. This model predicts the performance of the parasitoid in response to temperature affecting its seasonal development and that of the two hosts. We compare model output with an extensive set of field observations from natural host populations. The predicted activity of the first adult parasitoid generation closely matches the seasonal pattern of attack on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) within the limitations of available data. The model predicts 1–4 full generations of M. trachynotus per year in eastern North America, with generations well synchronized with larvae of a known overwintering host, the obliquebanded leafroller Choristoneura rosaceana. The model predicts the observed density dependence of parasitism on spruce budworm. Predicted performance exhibits spatial variation caused by complex life-history interactions, especially synchrony with the overwintering host. This leads to a better performance in warm but not hot environments at middle latitudes and elevations. The model’s predicted spatial patterns correspond closely to our field observations on the frequency of parasitism on spruce budworm. Under climate change, the model predicts that the performance of M. trachynotus populations will improve in the northern portion of its range.

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3