Abstract
In this paper, a frequency-signature Radio-Frequency Identification (RFID) chipless tag for wearable applications is presented. The results achieved for a fully-textile solution guaranteeing a seamless integration in clothes are reported and discussed. The proposed tag consists of two planar monopole antennas and a 50 Ω microstrip line loaded with multiple resonators. In order to achieve a compact size, the resonators are slotted on the ground plane of the microstrip line. As for the antennas, the same geometry was exploited for both the TX and the RX tag antenna. In particular, it consists of a proximity fed planar monopole on a ground plane. The selected geometry guarantees easy integration with the multi-resonator structure. Numerical and experimental data referring to a 2-bit implementation are presented and discussed. For fabricating all the prototypes, a layer of pile was used as a substrate, while an adhesive non-woven conductive fabric was exploited for the fabrication of the conductive parts. Experimental tests demonstrate that although the performance of the final device strongly depends on the properties of the used materials and on the imperfections of the fabrication process, the proposed frequency-signature RFID chipless tag is suitable for wearable applications, such as anti-counterfeiting systems and laundry labels.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献