Effects of Sample Shapes and Thickness on Distribution of Temperature inside the Mineral Ilmenite Due to Microwave Heating

Author:

Hidayat Mas Irfan P.ORCID,Felicia Dian M.,Rafandi Ferdiansyah I.,Machmudah Affiani

Abstract

The study of interaction between microwave radiation and minerals is gaining increasing interest in the field of minerals and material processing. Further studies are, however, still required to deepen the understanding of such microwave heating mechanisms in order to develop innovative techniques for mineral treatment using microwave heating. In this paper, effects of sample shapes and thickness on the distribution of temperature inside the mineral ilmenite (FeTiO3) due to microwave heating were numerically studied using the finite element (FE) method. The analysis was carried out in such a way that the flux of microwave energy was converted into an equivalent amount of heat generation in the mineral through the Poynting theorem of conservation of energy for the electromagnetic field. In this study, as a first attempt, the cylinder and slab of ilmenite were modeled to be irradiated from top and bottom surfaces with the variation of cylinder and slab thicknesses. Temperature-dependent material properties of ilmenite were taken into account in the FE simulation. Corresponding boundary conditions were then applied accordingly to the cylinder and slab of ilmenite with comparable characteristic length. Numerical results showed that, in terms of temperature differences between locations having maximum and minimum temperatures, slab geometries tended to produce higher values in comparison to those of cylinder geometries with the thickness variation, while the profiles of temperature inside the ilmenite samples were similar for both geometries. For the same duration of microwave heating, the slab geometry, hence, induced greater non-uniformity of temperature inside the ilmenite. It was also observed that, for the ilmenite samples with thickness value greater than 1.5 cm, the hotspot locations were not in the center of the sample, but on the surface of sample. Moreover, from several thickness values considered in this study, the ilmenite sample with thickness value of 3 cm gave a good trade-off between the maximum temperature value attained and temperature differences inside the sample, for both geometries. Thus, the shape and thickness of ilmenite samples affect the effectiveness of microwave heating of ilmenite, in terms of maximum temperature attained, temperature differences, and uniformity of temperature.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3