Genesis and Evolution of Ferromanganese Crusts from the Summit of Rio Grande Rise, Southwest Atlantic Ocean

Author:

Benites Mariana,Hein James R.ORCID,Mizell KiraORCID,Blackburn Terrence,Jovane LuigiORCID

Abstract

The Rio Grande Rise (RGR) is a large elevation in the Atlantic Ocean and known to host potential mineral resources of ferromanganese crusts (Fe–Mn), but no investigation into their general characteristics have been made in detail. Here, we investigate the chemical and mineralogical composition, growth rates and ages of initiation, and phosphatization of relatively shallow-water (650–825 m) Fe–Mn crusts dredged from the summit of RGR by using computed tomography, X-ray diffraction, 87Sr/86Sr ratios, U–Th isotopes, and various analytical techniques to determine their chemical composition. Fe–Mn crusts from RGR have two distinct generations. The older one has an estimated age of initiation around 48–55 Ma and was extensively affected by post-depositional processes under suboxic conditions resulting in phosphatization during the Miocene (from 20 to 6.8 Ma). As a result, the older generation shows characteristics of diagenetic Fe–Mn deposits, such as low Fe/Mn ratios (mean 0.52), high Mn, Ni, and Li contents and the presence of a 10 Å phyllomanganate, combined with the highest P content among crusts (up to 7.7 wt %). The younger generation is typical of hydrogenetic crusts formed under oxic conditions, with a mean Fe/Mn ratio of 0.75 and mean Co content of 0.66 wt %, and has the highest mean contents of Bi, Nb, Ni, Te, Rh, Ru, and Pt among crusts formed elsewhere. The regeneration of nutrients from local biological productivity in the water column is the main source of metals to crusts, providing mainly metals that regenerate rapidly in the water column and are made available at relatively shallow water depths (Ni, As, V, and Cd), at the expense of metals of slower regeneration (Si and Cu). Additionally, important contributions of nutrients may derive from various water masses, especially the South Atlantic Mode Water and Antarctic Intermediate Water (AAIW). Bulk Fe–Mn crusts from the summit of RGR plateau are generally depleted in metals considered of greatest economic interest in crusts like Co, REE, Mo, Te, and Zr, but are the most enriched in the critical metals Ni and Li compared to other crusts. Further investigations are warranted on Fe–Mn crusts from deeper-water depths along the RGR plateau and surrounding areas, which would less likely be affected by phosphatization.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3