Abstract
Paste and thickened tailings (PTT) technology can improve the utilization and management of tailings from processing plants. The pore size distribution (PSD) and microstructure evolution affected by the rake shear in thickening tailings beds are essential to produce a high-density tailings underflow. Continuous thickening and computed tomography (CT) scanning tests were conducted to study the PSD with and without shear. The pore morphology was studied to reveal the shearing-dewatering performance of the tailings bed. The results show that at a flocculant solution concentration of 0.01 wt % and a feed slurry concentration of 10 wt%, the underflow concentration with and without shear can reach 58.5 wt %and 55.8 wt %, respectively. The CT image reconstruction models demonstrated that the porosity of the sheared tailings bed increased with the bed height. When the bed height increased from 2.5 to 10 cm, the porosity increased from 35.1% to 41.9%, the pore fractal dimension increased from the range 1.8–1.95 to the range 2.1–2.15, and the pore quantity decreased by 21.39%. The average pore volume increased with increasing height by 13.93%, 16.57% and 12.07%. The pore structure became more complex with the bed height, and the connectivity between pores increased to form water-flow channels, which were beneficial to the drainage of sealed water.
Funder
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献