Pore Connectivity and Dewatering Mechanism of Tailings Bed in Raking Deep-Cone Thickener Process

Author:

Chen Xinming,Jin Xiangfei,Jiao HuazheORCID,Yang Yixuan,Liu Juanhong

Abstract

Paste and thickened tailings (PTT) technology can improve the utilization and management of tailings from processing plants. The pore size distribution (PSD) and microstructure evolution affected by the rake shear in thickening tailings beds are essential to produce a high-density tailings underflow. Continuous thickening and computed tomography (CT) scanning tests were conducted to study the PSD with and without shear. The pore morphology was studied to reveal the shearing-dewatering performance of the tailings bed. The results show that at a flocculant solution concentration of 0.01 wt % and a feed slurry concentration of 10 wt%, the underflow concentration with and without shear can reach 58.5 wt %and 55.8 wt %, respectively. The CT image reconstruction models demonstrated that the porosity of the sheared tailings bed increased with the bed height. When the bed height increased from 2.5 to 10 cm, the porosity increased from 35.1% to 41.9%, the pore fractal dimension increased from the range 1.8–1.95 to the range 2.1–2.15, and the pore quantity decreased by 21.39%. The average pore volume increased with increasing height by 13.93%, 16.57% and 12.07%. The pore structure became more complex with the bed height, and the connectivity between pores increased to form water-flow channels, which were beneficial to the drainage of sealed water.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3