Pseudo-Gamma Spectroscopy Based on Plastic Scintillation Detectors Using Multitask Learning

Author:

Jeon ByoungilORCID,Kim Junha,Lee Eunjoong,Moon Myungkook,Cho Gyuseong

Abstract

Although plastic scintillation detectors possess poor spectroscopic characteristics, they are extensively used in various fields for radiation measurement. Several methods have been proposed to facilitate their application of plastic scintillation detectors for spectroscopic measurement. However, most of these detectors can only be used for identifying radioisotopes. In this study, we present a multitask model for pseudo-gamma spectroscopy based on a plastic scintillation detector. A deep- learning model is implemented using multitask learning and trained through supervised learning. Eight gamma-ray sources are used for dataset generation. Spectra are simulated using a Monte Carlo N-Particle code (MCNP 6.2) and measured using a polyvinyl toluene detector for dataset generation based on gamma-ray source information. The spectra of single and multiple gamma-ray sources are generated using the random sampling technique and employed as the training dataset for the proposed model. The hyperparameters of the model are tuned using the Bayesian optimization method with the generated dataset. To improve the performance of the deep learning model, a deep learning module with weighted multi-head self-attention is proposed and used in the pseudo-gamma spectroscopy model. The performance of this model is verified using the measured plastic gamma spectra. Furthermore, a performance indicator, namely the minimum required count for single isotopes, is defined using the mean absolute percentage error with a criterion of 1% as the metric to verify the pseudo-gamma spectroscopy performance. The obtained results confirm that the proposed model successfully unfolds the full-energy peaks and predicts the relative radioactivity, even in spectra with statistical uncertainties.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3