Research on the Intelligent Auxiliary Design of Subway Station Building Space Based on Deep Learning

Author:

An Jiang1,Zhang Jiuhong2,Ma Mingxiao3

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, NO. 3-11, Wenhua Road, Heping District, Shenyang 110819, China

2. Jangho Architecture College, Northeastern University, Chuangxin Road No. 195, Hunnan District, Shenyang 110169, China

3. School of Automation Science and Electrical Engineering, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing 100000, China

Abstract

In recent years, deep learning methods have been used with increasing frequency to solve architectural design problems. This paper aims to study the spatial functional layout of deep learning-assisted generation subway stations. Using the PointNet++ model, the subway station point cloud data are trained and then collected and processed by the author. After training and verification, the following conclusions are obtained: (1) the feasibility of spatial deep learning for construction based on PointNet++ in the form of point cloud data is verified; (2) the effectiveness of PointNet++ for the semantic segmentation and prediction of metro station point cloud information is verified; and (3) the results show that the overall 9:1 training prediction data have 60% + MIOU and 75% + accuracy for 9:1 training prediction data in the space of 20 × 20 × 20 and a block_size of 10.0. This paper combines the deep learning of 3D point cloud data with architectural design, breaking through the original status quo of two-dimensional images as research objects. From the dataset level, the limitation that research objects such as 2D images cannot accurately describe 3D space is avoided, and more intuitive and diverse design aids are provided for architects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3