High-Temperature Rheological Properties of Asphalt Mortar Modified with Spent FCC Catalysts

Author:

Wang Zhimei1,Kong Lingyun1,He Shengqing1

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Spent fluid catalytic cracking catalysts (S-FCC-Cs) constitutes a fraction of the hazardous solid waste generated in the petrochemical industry. The resource application of S-FCC-Cs remains a challenge. This study aims to explore utilizing S-FCC-Cs in asphalt mortar as a means to enhance resource utilization. Five different S-FCC catalysts were used as substitutes for mineral powder in the asphalt slurry at varying proportions. The high-temperature rheology of the resulting spent FCC catalyst-modified asphalt slurry was analyzed using temperature scanning tests and multiple stress creep recovery (MSCR) tests conducted at different temperatures and substitution doping levels. As the proportion of alternative doping increased, both the phase angle and irrecoverable creep flexibility decreased, while the absolute values of the rutting factor, deformation recovery rate, and irrecoverable creep flexibility difference increased. Moreover, as the temperature rose, the phase angle increased while the rutting factor decreased. The inclusion of an alternative admixture significantly improved the high-temperature performance of the asphalt mastic. This improvement was attributed to several factors, including the increase in the elastic component, enhanced deformation resistance, and improved deformation recovery. While the high-temperature performance of spent FCC catalyst-modified asphalt mastic gradually declined with increasing test temperature, all performance indices remained superior to those of limestone mineral powder asphalt mastic. In addition, the asphalt mortar modified by S-FCC-C JX with a surface area and hydrophilic coefficient of 105 m2/g and 1.026, respectively, exhibited the best rutting resistance and resilience performances among the five mortars, suggesting that the two factors co-affected the high-temperature rheological properties of S-FCC-C asphalt mortar. Considering stress sensitivity, it is more advantageous in improving the high-temperature deformation resistance of asphalt slurry at the JX dosage of 20%. These research findings offer valuable guidance for the application of S-FCC catalysts in asphalt pavement.

Funder

Science and Technology Plan Project of Chongqing Transportation Bureau

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3