Early Detection of Late Onset Sepsis in Extremely Preterm Infants Using Machine Learning: Towards an Early Warning System

Author:

Garstman Arno G.1,Rodriguez Rivero Cristian2ORCID,Onland Wes34ORCID

Affiliation:

1. Institute of Informatics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

2. Centre for Research in Intelligent Sensors and Systems, Cardiff Metropolitan University, Cardiff CF52YB, UK

3. Department of Neonatology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

4. Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands

Abstract

A significant proportion of babies that are admitted to the neonatal intensive care unit (NICU) suffer from late onset sepsis (LOS). In order to prevent mortality and morbidity, the early detection of LOS is of the utmost importance. Recent works have found that the use of machine learning techniques might help detect LOS at an early stage. Some works have shown that linear methods (i.e., logistic regression) display a superior performance when predicting LOS. Nevertheless, as research on this topic is still in an early phase, it has not been ruled out that non-linear machine learning (ML) techniques can improve the predictive performance. Moreover, few studies have assessed the effect of parameters other than heart rate variability (HRV). Therefore, the current study investigates the effect of non-linear methods and assesses whether other vital parameters such as respiratory rate, perfusion index, and oxygen saturation could be of added value when predicting LOS. In contrast with the findings in the literature, it was found that non-linear methods showed a superior performance compared with linear models. In particular, it was found that random forest performed best (AUROC: 0.973), 24% better than logistic regression (AUROC: 0.782). Nevertheless, logistic regression was found to perform similarly to some non-linear models when trained with a short training window. Furthermore, when also taking training time into account, K-Nearest Neighbors was found to be the most beneficial (AUROC: 0.950). In line with the literature, we found that training the models on HRV features yielded the best results. Lastly, the results revealed that non-linear methods demonstrated a superior performance compared with linear methods when adding respiratory features to the HRV feature set, which ensured the greatest improvement in terms of AUROC score.

Funder

University of Amsterdam

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3