Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique

Author:

Zhang Min1ORCID,Li Gang1,Yang Yao1,Jin Mei1,Wang Gang1

Affiliation:

1. Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

Abstract

In order to reduce the silique shattering loss of the rapeseed mechanical harvesting process, based on the state of force on the silique during the rapeseed harvesting reel branch stage, Ningza 1810, Zhenyou 8, and Fengyou 306 were used as research objects, and the experimental research on the factors affecting rapeseed silique shattering was carried out using the swing impact method. The experimental analysis showed that rapeseed varieties, silique moisture content, silique growth position, collision material, impact speed, force position, and other factors had significant effects on silique shattering. The impact velocity was less than 1.5 m·s−1, the difference in the effect of each factor on pod shattering was not significant, and it was not easy to shatter when the moisture content of the rapeseed silique was higher. The impact resistance of the front side of rapeseed was two to four times that of the bonding surface of rapeseed petals, the shattering rate of the top rapeseed silique was twice that of the bottom siliques, and when siliques were supported, they were more likely to shatter under external forces than when they were unsupported. The experimental study of the mechanical properties of rapeseed siliques was carried out using the impending fracture method; the experimental analyses showed that the support position and force position of the silique, the loading speed, and the growth position of the silique had a significant effect on the mechanical properties of the silique. The maximum cracking force was higher and the bending strength was stronger when the body of the silique was supported; the range of the maximum cracking force was 3.05 N to 4.16 N, and the bending strength range was 8.48 MPa to 11.57 MPa. The maximum cracking force and bending strength of the silique were stronger when the front side of the silique petal was pressurized than when the bonding surface of the petal was pressurized. Based on Pearson’s correlation and grey correlation analysis, the morphological characteristics of rapeseed siliques were ranked in order of their influence on the performance of siliques in terms of the angle between the silique and stalk, stalk diameter, petal thickness, beak length, silique thickness, silique width, and silique length. This study can be used as a reference for the design and optimization of the rapeseed harvesting reel branch mechanism and the selection of machine-harvestable rapeseed varieties.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

Foundation Research Project of Jiangsu Province

Funds for Modern Agricultural Industry Technology System Construction of China

Key Research Program & Technology Innovation Program of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Wang, L., Zhang, J., and Chen, Z. (2020). Picuture of Rape, Jiangsu Phoenix Science and Technology Press.

2. New-demand oriented oilseed rape industry developing strategy;Wang;Chin. J. Oil Crop Sci.,2018

3. Current status and problems of rapeseed production;Wu;J. Chin. Agric. Mech.,2017

4. Mechanical harvesting effects on seed yield loss, quality traits and profitability of winter oilseed rape (Brassica napus L.);Ma;J. Integr. Agric.,2012

5. Pod shatter-resistant Brassica fruit produced by ectopic expression of the fruitfull gene;Ostergaard;Plant Biotechnol. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3