Design of Liquid–Air Hybrid Cooling Garment and Its Effect on Local Thermal Comfort

Author:

Wang Wanwan1,Zhao Mengmeng1

Affiliation:

1. School of Textile and Clothing, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

Personal cooling garments were reported effective in improving thermal comfort in hot environments. In this study, three liquid–air hybrid cooling garments and one control garment were designed and made: aluminum-tube fan cooling (AAL), silicone-tube fan cooling (SAL), silicone-tube fan cooling with inner yarn fabric (YAL), and a control garment (CON) without the cooling sources. Subject trials were performed by eight female subjects in a climate chamber to simulate a summer indoor working environment at 32 °C and 50% relative humidity. The results showed that the liquid–air hybrid cooling garment provided effective convective and conductive heat dissipation compared with the no-cooling (CON) stat, chest, belly, shoulder, back, hand, thigh, and calf. The horizontal e, resulting in a decrease in local body skin temperature. Compared with the CON, the liquid–air cooling garment resulted in a maximum reduction of 1 °C for the mean torso skin temperature and 1.5 °C for the localized shoulder skin temperature. The AAL had a better cooling effect on the torso skin temperature compared with the SAL, and the cooling of the AAL was 0.5 °C lower than that of the SAL for the shoulder skin temperature. The presented liquid–air hybrid cooling garments were effective in cooling the body and improving thermal comfort. They were portable, accessible, and sustainable in hot indoor environments compared with air conditioners. Therefore, they could save energy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. A review of the corrective power of personal comfort systems in non-neutral ambient environments;Zhang;Build. Environ.,2015

2. Burton, D.R., and Collier, L. (1964). The Development of Water Conditioned Suits, Royal Aircraft Establishment. Tech. Note ME-400.

3. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition;Yang;Int. J. Occup. Saf. Ergon.,2022

4. Water cooled garments: A review;Nunneley;Space Life Sci.,1970

5. Real-time human core temperature estimation methods and their application in the occupational field: A systematic review;Falcone;Measurement,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3