Composite Fault Diagnosis of Rolling Bearings: A Feature Selection Approach Based on the Causal Feature Network
Author:
Affiliation:
1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
2. School of Foreign Languages, Beijing Technology and Business University, Beijing 100048, China
Abstract
Funder
National Natural Science Foundation of China
Publisher
MDPI AG
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Link
https://www.mdpi.com/2076-3417/13/16/9089/pdf
Reference38 articles.
1. A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator;Yu;Chaos Solitons Fractals,2016
2. Recursive variational mode extraction and its application in rolling bearing fault diagnosis;Pang;Mech. Syst. Signal Process.,2022
3. Mechanisms and the nature of causation;Glennan;Erkenntnis,1996
4. Compound Gear-Bearing Fault Feature Extraction Using Statistical Features Based on Time-Frequency Method;Dhamande;Measurement,2018
5. Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing;Zheng;ISA Trans.,2022
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning-Enhanced Small-Sample Bearing Fault Analysis Using Q-Transform and HOG Image Features in a GRU-XAI Framework;Machines;2024-05-27
2. An Intelligent Fault Diagnosis Framework for Rolling Bearings With Integrated Feature Extraction and Ordering-Based Causal Discovery;IEEE Sensors Journal;2024-05-15
3. Feature selection and interpretability analysis of compound faults in rolling bearings based on the causal feature weighted network;Measurement Science and Technology;2024-05-07
4. The Early Diagnosis of Rolling Bearings’ Faults Using Fractional Fourier Transform Information Fusion and a Lightweight Neural Network;Fractal and Fractional;2023-12-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3