Maneuver Decision-Making through Automatic Curriculum Reinforcement Learning without Handcrafted Reward Functions

Author:

Wei Yujie123,Zhang Hongpeng1ORCID,Wang Yuan1,Huang Changqiang1

Affiliation:

1. Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, China

2. Air Defence and Antimissile College, Air Force Engineering University, Xi’an 710051, China

3. Air Force Xi’an Flying College, Xi’an 710300, China

Abstract

Maneuver decision-making is essential for autonomous air combat. However, previous methods usually make decisions to aim at the target instead of hitting the target and use discrete action spaces instead of continuous action spaces. While these simplifications make maneuver decision-making easier, they also make maneuver decision-making more unrealistic. Meanwhile, previous studies usually rely on handcrafted reward functions, which are troublesome to design. Therefore, to solve these problems, we propose an automatic curriculum reinforcement learning method that enables agents to maneuver effectively in air combat from scratch. On the basis of curriculum reinforcement learning, maneuver decision-making is divided into a series of sub-tasks from easy to difficult. Thus, agents can gradually learn how to complete a series of sub-tasks, from easy to difficult without handcrafted reward functions. The ablation studies show that automatic curriculum learning is essential for reinforcement learning; namely, agents cannot make effective decisions without curriculum learning. Simulations show that, after training, agents are able to make effective decisions given different states, including tracking, attacking, and escaping, which are both rational and interpretable.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3