Characterization and Degradation of Ancient Architectural Red Sandstone in a Natural Erosion Environment

Author:

Liu Dunwen1,Ao Tao1ORCID,Cao Kunpeng1,Meng Xianqing1

Affiliation:

1. School of Resource and Safety Engineering, Central South University, Changsha 410083, China

Abstract

The properties and appearance of ancient architectural red sandstone will be damaged after being eroded by the natural environment for a long time. In order to investigate the weathering and erosion characteristics of the red sandstone structure of an existing ancient building, ultrasonic testing techniques, combined with scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray computed tomography (X-CT), were used to analyze a building in Ganzhou. The variation in chemical substances contained in the red sandstone specimens according to phenology was analyzed by X-ray diffraction (XRD). The characteristic parameters of the CT grayscale images of the red sandstone were extracted and combined with the ultrasonic wave velocity values to comprehensively analyze the degradation characteristics of the red sandstone specimens, and a method to characterize the degradation degree of the red sandstone as a whole plane is proposed. We use the gray model (GM (1, 1)) to predict the surface degradation degree of red sandstone specimens, and gray relation analysis (GRA) to further analyze the correlation between the characteristic parameters of CT grayscale images of red sandstone and its degradation degree. The results show that in the natural erosion environment, dolomite and chlorite are generated on the exposed surface of the red sandstone, which can protect the internal sandstone to a certain extent. The degradation degree of the red sandstone specimens in the horizontal X and Y directions varies, and the proposed method of calculating the overall plane degradation degree of the red sandstone is feasible. The minimum average relative error of the surface degradation degree obtained from the gray prediction GM (1, 1) model is 1.4591%. There is a good correlation between the characteristic parameters of the red sandstone CT grayscale images and the degradation degree.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3