Fatigue Crack Growth Studies under Mixed-Mode Loading in AISI 316 Stainless Steel

Author:

Alshoaibi Abdulnaser M.1ORCID,Bashiri Abdullateef H.1

Affiliation:

1. Mechanical Engineering Department, College of Engineering, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia

Abstract

The objective of this study is to examine the behavior of fatigue crack growth (FCG) in the mixed mode (I/II) of the AISI 316 austenitic stainless steel alloy, considering mode mixity angles of 30°, 45°, and 60°. This particular alloy is widely used in the marine industry and various structural components because of its exceptional properties, such as high corrosion resistance, good formability, weldability, and high-temperature strength. By investigating the crack growth behavior, the study seeks to provide insights into the material’s durability and potential for long-term use in demanding applications. To analyze fatigue crack growth behavior using linear elastic fracture mechanics (LEFM), this study utilizes compact tension shear (CTS) specimens with varying loading angles. The CTS specimens provide an accurate simulation of real-world loading conditions by allowing for the application of various loading configurations, resulting in mixed-mode loading. The ANSYS Mechanical APDL 19.2 software, which includes advanced features such as separating, morphing, and adaptive remeshing technologies (SMART), was utilized in this study to precisely model the path of crack propagation, evaluate the associated fatigue life, and determine stress intensity factors. Through comparison with experimental data, it was confirmed that the loading angle had a significant impact on both the fatigue crack growth paths and the fatigue life cycles. The stress-intensity factor predictions from numerical models were compared to analytical data. Interestingly, it was observed that the maximum shear stress and von Mises stresses occurred when the loading angle was 45 degrees, which is considered a pure shear loading condition. The comparison shows consistent results, indicating that the simulation accurately captures the behavior of the AISI 316 austenitic stainless steel alloy under mixed-mode loading conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3