Multi-Objective Optimization of Micro-Milling Parameters—The Trade-Offs between Machining Quality, Efficiency, and Sustainability in the Fabrication of Thin-Walled Microstructures

Author:

Wang Peng1,Bai Qingshun1ORCID,Cheng Kai2,Zhao Liang1,Zhang Yabo1

Affiliation:

1. School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK

Abstract

Micro-milling has found extensive applications in machining components with thin-walled microstructures, such as terahertz slow-wave structures, microfluidic chips, and micro-molds. Due to the influence of size effects, micro-milling exhibits higher specific energy consumption compared with traditional milling, implying that more energy is consumed to remove a unit volume of material, particularly in challenging-to-machine materials like Ti-6Al-4V. Historically, research on parameter optimization for micro-milling has predominantly focused on enhancing machining quality and efficiency, with limited attention given to energy efficiency. However, in the context of the “double carbon” strategy, energy conservation and emissions reduction have garnered significant attention in the manufacturing industry. Therefore, this paper proposes a micro-milling parameter-based power consumption model. Based on this, a specific energy consumption model can be obtained. Moreover, evolutionary algorithms are utilized for the optimization of micro-milling parameters, which aims to achieve comprehensive enhancements in both machinability and sustainability. The optimization objectives encompass improving surface quality, dimensional accuracy, material removal rate, and specific energy consumption during the micro-milling process for thin-walled micro-structures. Among them, NSGA-III achieves the best optimization results. Under conditions in which cutting energy consumption and processing efficiency are very close, the optimization outcomes based on NSGA-III lead to the best machining quality, including the minimum surface roughness and dimensional errors, and the largest surface fractal dimension. The optimal combination of micro-milling parameters is n = 28,800 rpm, fz = 2.6 μm/t, and ap = 62 μm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3