Output Force Density Saturation in COMSOL Simulations of Biomimetic Artificial Muscles

Author:

Coltelli Michelangelo A.1,Keeven Joshua M.2,Leckie Jacob M.2,Catterlin Jeffrey K.1ORCID,Sadagic Amela2,Kartalov Emil P.1ORCID

Affiliation:

1. Physics Department, Naval Postgraduate School, Monterey, CA 93943, USA

2. Computer Science Department, Naval Postgraduate School, Monterey, CA 93943, USA

Abstract

Many modern applications, such as undersea drones, exoskeletal suits, all-terrain walker drones, prosthetics, and medical augments, would greatly benefit from artificial muscles. Such may be built through 3D-printed microfluidic devices that mimic biological muscles and actuate electrostatically. Our preliminary results from COMSOL simulations of individual devices and small arrays (2 × 2 × 1) established the basic feasibility of this approach. Herein, we report on the extension of this work to N × N × 10 arrays where Nmax = 13. For each N, parameter sweeps were performed to determine the maximal output force density, which, when plotted vs. N, exhibited saturation behavior for N ≥ 10. This indicates that COMSOL simulations of a 10 × 10 × 10 array of this type are sufficient to predict the behavior of far larger arrays. Also, the saturation force density was ~9 kPa for the 100 μm scale. Both results are very important for the development of 3D-printable artificial muscles and their applications, as they indicate that computationally accessible simulation sizes would provide sufficiently accurate quantitative predictions of the force density output and overall performance of macro-scale arrays of artificial muscle fibers. Hence, simulations of new geometries can be done rapidly and with quantitative results that are directly extendable to full-scale prototypes, thereby accelerating the pace of research and development in the field of actuators.

Funder

Office of Naval Research

NPS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3